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The activated escape of an underdamped Brownian particle out of a deep potential well is character-
ized by weak friction ¥ << (7 is the coefficient of friction and w is a typical frequency of the intrawell
motion) and by a large barrier height U, >>T (U, is the barrier height and T is the temperature). The
approach developed previously to calculate the decay rate is based on the derivation of an integral equa-
tion and enables one to sum up an infinite series in powers of the ratio Yy Uy /T~ 1 contributing to the
preexponential factor of the Arrhenius law. In the present paper it is shown that the leading correction
to the above result comes from the slowing down of the particle motion near the top of the barrier and is
of the order of (T /U,)In(U,/T). To calculate it explicitly, one needs to find a correction to the kernel
of the above-mentioned integral equation. Beyond the leading-logarithmic approximation, two different
factors contribute corrections of the order of T/U,~y/w. The noise-induced effects in the barrier
crossing-recrossing by particles in a narrow energy range e~y 7T /w can be easily incorporated into the
general scheme of the calculations. On the other hand, a more accurate derivation of the kernel of the
integral equation is required to take into account small variations of the intrawell particle motion caused
by variations of the particle energy on the scale T' << U, under the effects of friction and thermal noise.
The proposed consistent expansion in terms of the small parameters of the problem provides an effective
approach to a quantitative investigation of the turnover behavior in the Kramers problem. For the re-
gime of an intermediate-to-strong friction, the finite-barrier corrections can be neglected, since, for typi-
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cal barrier shapes, they are always small.

PACS number(s): 05.40.+j

I. INTRODUCTION

The activated decay of metastable states is a common
feature of many physical and chemical systems. These
systems are characterized by a number of nearly stable
states separated by high potential barriers. Transitions
between different potential minima due to the thermal
fluctuations are exponentially rare if the barrier height
U, is large compared to the temperature 7. In this limit
the decay rate (inverse lifetime) of the metastable state is
described by the Arrhenius law

, (1)

1
-

where Q is the frequency of small oscillations near the
bottom of the potential well. Other details of the internal
structure of the system and of its interaction with the en-
vironment are absorbed into the preexponential factor A4.
The condition of metastability, 72 >>1, requires U, >>T.
However, the exponential dependence of 7 on the barrier
height provides a long lifetime even for a moderate ratio
U,/T>5. With a further increase of this ratio, the de-
cay events become too rare to be observable. Hence, one
arrives at the conclusion that the ratio U,/T must be
considered as large in its quality of the argument of the
exponential. At the same time, corrections in the inverse
parameter, T /U,, may still be of some importance when
calculating the preexponential factor 4. This general ob-
servation can be clarified by considering the escape of a
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Brownian particle out of a one-dimensional potential
well. Originally, this model was proposed by Kramers in
order to elucidate the process of thermal dissociation of a
molecule interacting with a gas of light particles [1].
Many decades later it was realized that a resistively
shunted Josephson junction represents virtually the only
experimental system embodying all the features of the
Kramers theoretical model [2]. An exhaustive survey of
the issues related to the Kramers problem can be found
in a review article [3]. A detailed exposition of the
mathematical methods and physical results for an under-
damped Brownian motion in deep potential barriers is
given in Ref. 4. Since the physical aspects of the problem
are discussed already in the above-mentioned articles and
reviews, it is worthwhile to focus mostly on mathematical
procedures.
The starting point is the Fokker-Planck equation,

pOf dUXx)Of _ 90 | ,0f
m ox dx Odp 78p mT o, T/

p ) (2)

for the distribution function f (p,x) of a Brownian parti-
cle with the mass m, coordinate x, and momentum p
moving in the potential U (x) with the friction coefficient
v. The function f(p,x) is assumed to be normalized to
one particle in the potential well,

ff(p,x)dp dx=1. (3)

Near the bottom of the well, the distribution function is
close to the equilibrium one,
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p? U(x)—U,
2mT T ’

4)

fp,x)=~ exp | —

27T
where Q is the frequency of small oscillations near the
bottom of the well and U, is the height of the barrier.
For definiteness, the top of the barrier is placed at x =0
and is described by the asymptotics

Ux)=—1me’x?. (5)

At the outside of the barrier there are no particles, with
exception of those escaping out of the well, which yield
the boundary condition

f(p,x)—>0; x— o0 . (6)

The decay rate is given by the flux of the particles across
the top of the barrier,

LI A
7 re0Lap. )

T

Substitution into this expression of the Boltzmann distri-
bution and integration over positive momenta yields Eq.
(1) with the preexponential factor 4 =1. In the major
part of this paper, the underdamped escape will be con-
sidered. Then, at energies close to the top of the barrier,
the distribution is depleted due to the escape of particles
across the barrier, since the excitation of particles by
thermal noise is too weak to reestablish the equilibrium
shape of the distribution function. In this case the pre-
exponential factor A is smaller than unity and depends
on the noise strength, temperature, etc.

It should be noted that in an underdamped case, when
the coefficient of friction is small,

Y <<Qo, (8)

the entire energy of a particle,
2
e=2—+Ux), )
2m

is nearly conserved in one cycle of its motion in the well.
This justifies working out a perturbational approach
starting from the particle trajectory at a given energy € in
the absence of friction and noise. Then, from a formal
point of view, the preexponential factor 4 can be thought
of as a function of the two dimensionless parameters,
v/w and T/U,. In a leading approximation, the expan-
sion of A4 in the small parameter ¥ /o has the following
form [5]:

A40= a,(yUy/oT)'*"/% . (10)

n=0

This series has a finite radius of convergence. However,
as an analytical function it makes sense for any value of
its argument,

5§ vUy

—_—~

A
T T’

(11

where 8~y U,/ is the energy loss per one cycle of
motion at the barrier height. For the function A4,(A),
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the following integral representation was obtained [5]:
In{1—exp[ —A(k2+%)]}dk

Ay(A)=exp %fo“’

AP+l
(12)
Asymptotically, this yields
Ag(A)=A+ELA 2/ 2= A—0.820%7 A<<1,
(13)
where £(x) is the Rieman § function, and
Ag(A)=1—2(7A) 2exp(—A/4), A>>1. (14)

A naive guess is that corrections to this result must be ex-
pandable in powers of the small parameters T /U, and
v /w. It will be shown, however, that, due to the slowing
down of the particle motion near the barrier top, the per-
turbative expansion for A4 looks rather like

UO
AI(A)IHT‘FB](A) , (15)

where S is the action per cycle of motion of an escaping
particle (an explicit expression for S is given below), the
dependence on the ratio yU,/wT is displayed through
the positive functions 4;(A) and B,(A) of the argument

s U S
Y2 _ 0y @S
A= T T o Uy’ (16)

and the ratio ®S /U, is a dimensionless number deter-
mined by the shape of the potential Uj(x).

The general frame of this paper is as follows. In Sec.
11, the energy-diffusion equation is solved and the general
structure of an asymptotic expansion of A (y/w,T/U,)
in the limit of small A, when y /o0 << T /U, is discussed.
In Sec. III, the opposite limit, 1>>y /w>>T /U,, is con-
sidered. Then, the flux of escaping particles is Boltzman-
nian with an exception of a narrow range of energies,
e~y T /w << T, where under effects of the thermal noise
the distribution function acquires a fine structure. This
results in a relative suppression of the decay rate in pro-
portion to the small parameter y /w <<1. In Sec. IV, a
general scheme of the integral equation approach is ex-
posed and the explicit expression (12) for Ay(A) is de-
rived. In Sec. V, the kernel of the integral equation is cal-
culated to leading order in (T /Uy)In(U,/T), when the
main contribution is due to the slowing down of the par-
ticle motion near the barrier top. In Sec. VI, the correct-
ed kernel is solved and an expression for the function
A(A) is derived. In Sec. VII, a contribution to the func-
tion B;(A) from the noise-induced reflections and the
barrier recrossings is calculated. In Sec. VIII, the kernel
of the integral equation is calculated beyond the leading-
logarithmic correction and in Sec. IX, a complete expres-
sion for the function B(A) is found. In Sec. X, the re-
sults obtained are applied to a quantitative analysis of the
turnover problem for the preexponential factor



48 ACTIVATED DECAY RATE: FINITE-BARRIER CORRECTIONS 3273

Aly/w,T/Uy). Section XI considers linear corrections
in T /U, in the regime of an intermediate-to-strong fric-
tion.

II. ENERGY-DIFFUSION REGIME

To consider the limit y—0, Eq. (2) must be
transformed to the energy variable,
af 0 9 f
—=—=ty—0pl(s, 17
ox 14 aa‘p(e x) +f an
where
ple,x)={2m[e—U(x)]}”? (18)

is the absolute value of the momentum for a particle with
an energy € at a point x and the signs * denote the direc-
tion of motion. Averaging Eq. (17) over x at a given en-
ergy yields the energy-diffusion equation [1],

2aie) | p | = (19)
where the diffusion coefficient 8(€) is given by
8(e)=yS(e)=2y [ '(2m[e—U(x)]}"%dx . (20)

X1
The points x ,(€) are the turning points,
U(x1,2)=8 ’ (21)

and the function S (¢) is the action per cycle. The solu-
tion of Eq. (19) with the boundary condition

f(0)=0 (22)
is given by
0 e+ U,
Se)= P T
oexple/T)de © exp(—¢e'/T) e
ol R 0o s(—ey 9F

(23)
A correction from the energy dependence of ) near the
bottom of the potential well is neglected, as our principal
aim here is the calculation of a leading correction to A4
coming from 8(g). The relation

1 seyrdfe) (24)
T de

e=0

which can be derived with the use of Egs. (2) and (22) (see
also Ref. [1]), yields

1 _
r 27 exp

f « exp(—e/T)de
0

8(—g) (25)

The function 8(e) can be expanded in an asymptotic
series in €. For our purposes, the first-order correction
has to be considered,

5(e)zs+l

U,
ln—+CU+1+1n2—1n 'T| , (26)

where
6=6(0)=yS , (27)
S is the action per cycle of motion with e =0,

s=2 [ [—2mU(x)]"2dx , (28)
*1

and Cy is a number dependent on the shape of the poten-
tial U(x),

0 mo 1
Cy=2 dx { ——————
v fxl [[ —2mU (x ]1/2

Physically, 6 is the energy loss per cycle of motion calcu-
lated in a linear approximation in v,
2

dt , (30)

mao?x?

+In

(29)
0

SEymﬁ

where dx (t) /dt is the solution of the Newton equation in
the potential U (x) with the entire energy e=0. Substitu-
tion of Eq. (26) into Eq. (25) and expansion in the small
parameter ¥ /w then yields

Ay /0, T/Uy)

U
AlnT°+A(CU+2+1n2—C) , (3D

where C=200.5772 is the Euler number. Comparing
this expression with the definition (15) yields the asymp-
totics

Ag(A) =~
A,(A)=
B,(A)=A(Cy+2+In2—C);

A; Al (32)
A; A1 (33)
A<1. (34)

On this stage, all the parameters of the problem are in-
troduced. We have calculated them for two typical po-
tentials. For a cubic potential

2.2
Ux)=—"92% |1 - X || (35)
X1
one obtains
U, 5
—=—"~0.1389 ; 36
oS 36 (36)
Cy=31In6~5.375 . (37)
For a quartic potential
2.2 2
Ux)y=—2922% X || (38)
2 1
one obtains
Uy 3
—=—=0.18 39
=5 16 75 ; (39)
Cy=5In2~3.466 . (40)

The above results, obtained in a linear-in-y /w approxi-
mation, reveal a rather complicated structure of the
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asymptotic expansion for A in the second small parame-
ter T/U,. With the account of further terms, this expan-
sion takes the form

n

P

n

T

0
1 —_
U, n

Ay /w0, T/Uy)=A Y T

n=0

; ¥/w0—0

(41)

where P,(x) is a polynomial function. In a series of pa-
pers a modified expression for 4 was proposed [6,7]. It
exploits essentially Eq. (12) with A multiplied by a func-
tion of ¥ /w [8,9]. Naturally, in the limit of ¥ /w—0 only
the first term of Eq. (41) is reproduced.

III. EFFECTS OF RECROSSINGS

If the energy dissipation is sufficiently strong, & >>T,
particles succeed to be thermalized during their intrawell
motion and the flux of the right-going particles near the
top of the barrier is nearly Boltzmannian. In this case,
solution of the approximate equation near the top of the
barrier,

LQ-L+ 2 ﬂ: i Tﬂﬁ—
. mcoxap yap m o of | (42)
in the limit of ¥ /@ <<1 is given by [1]
172
_ Uy 1>2—m2cz)23c2 1
Fpx)= 5 pexp |~ 2mT 2rmyT
X [P exp | — wu’ (43)
— exp 2m')/T “-
The flux of escaping particles yields the decay rate
1_(= 2 _0 v _Y
T f—oo mf(p,O)dp 21 : 20 |P T |-
(44)
Comparing with Eq. (1), one can write
1 T U
A~1—-L = —————A, 1<<Ax<U,/T.
20 2 Uy oS o/
(45)

In turn, comparison with Eq. (15) yields the following
asymptotics:

Ag(A)=1; A>>1 (46)
A{(A)=0; A>>1 (47)
B (A)=A/2; A>1. (48)

In the following sections we will find explicit expressions
for Ay(A), 4,(A), and B(A) which are applicable for
arbitrary A and have as its asymptotics Egs. (32)-(34) for
A <<1 and Egs. (46)—(48) for A>>1.
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IV. INTEGRAL-EQUATION FORMALISM

To generalize the above results for finite values of
A=6/T, one has to find a perturbative solution of the
Fokker-Planck equation (18). In this section, an earlier
developed approach to the calculation of 4,(A) is briefly
described. Some quantities and concepts introduced in
this way will be used for further extension of this ap-
proach.

The typical energies of the escaping particles are small
compared with the typical potential energy e~ T << U,,.
In neglecting corrections of the order of T /U, <<1, the
differential equation (17) is equivalent to the integral
equation

f(s,x)=f:° gle,esx,x")f (e',x")de" . (49)

The Green function g (e,e’,x,x’) is governed by the equa-
tion

dg _ d 172 | 198
= =ty—[—2mU T==>+g]| . 50
™ Y 36 [—2mU(x)] 3 T8 (50)
The initial condition at the starting point x =x"' is
g (g, e';x,x)=8p(e—¢'), (51)

where 6,,(z) is the Dirac ¢ function. Obviously, the solu-
tion of Eq. (50) is a Gaussian function of e —¢’. For our
purposes we need only the Green function for a basic tra-
jectory, which starts from the barrier top, x =0, goes to
the turning point, x =x,, and backwards as

(e—e'+8)?

gole—&)=(478T) V2exp 45T

(52)

The parameter 6 is the energy loss per cycle of motion
given by Eq. (27). This Green function describes the
probability of a particle returning to the barrier with en-
ergy € after a cycle of motion, if its initial energy when
reflecting from the barrier was equal to €. Near the top
of the barrier, the energy distribution function f(¢g) is es-
tablished by the particles which failed to cross the barrier
at the previous attempt because their energies were nega-
tive ¢’ <0. This simple consideration enables one to write
down the integral equation [10]

f(e)=fi) gole—¢€")f(e')de . (53)

This equation has to be solved with the boundary condi-

tion that, for energies deep in the potential well, f(¢) is

Boltzmannian,

e+ U,
T

; lel>T; e€<0. (54)

fle)= exp

27T

The decay rate is then given by the relation

1= [ferde (55)

which explicitly neglects contributions from the particles
recrossing the barrier.
To solve the integral equation by the Wiener-Hopf
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method, the one-sided Fourier transformation is intro-
duced,

j U
ihe | e | Yo

21T B
= +
f+(A) Q f_we(_s)exp T >ttt T

fle)de ,

(56)

where © denotes the conventional steplike function. The
integral equation takes the form

S+ )+ f_(N)=go(A)f_(A), (57)
where

go(A)=exp[ —A(A*+1)] (58)
and

A=5/T . (59)

After rewriting the equation

i) =—GA)f_(N), (60)
the function
G(A)=1—gy(A) (61)

must be separated into the factors, analytical in the upper
and lower half-planes of complex A

G(A)=GL(AG_(A), (62)
where
d\A' InG (L")
=t [ ==
InG, ()= [ 2mi N —ATFi0 (63)
In an extremely underdamped limit one has
G.(AM)=TFiAY A ti/2), A<<1. (64)
Equation (60) can now be written in the form
f+ Q)
=—f_(AMg_(A). 65
2. (L) f-X)g_(X) (65)

The two sides of this equation are analytical, respectively,
in the upper and lower half-planes of A and have a com-
mon stripe of analyticity. This means that they are equal
to a simple function of A which must be found from a
boundary condition. In our case, this condition is given
by Eq. (54) which after the Fourier transformation (56)
yields

1
Aris2’
The explicit solutions of Eq. (65) with the boundary con-
dition (66) look like [5]

iGL(AMG_(—i/2)
S+ (W)= At+i/2 ’

iG_(—i/2)
C G_(MA+i/2)

fo(M)=— A +i/2|<<1 . (66)

(67)

f-\)= (68)
The function f, (A) is analytical in the entire plane of
complex A since f(g), according to Eq. (53), decreases for
€— oo sooner than any exponential function,
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f(e)~exp(—e2/4T8), e>>(T8)?. (69)

In contrast, f_(A) is analytical for ImA < —1. The pre-
exponential factor is obtained from the relation

Ao(A)=f1(i/2) (70)

which reproduces Eq. (12).

V. LEADING-LOGARITHMIC APPROXIMATION

In order to calculate the function 4,(A), one has to
solve the equation

y A

de 1)

of _ 4,9 _ 172
3 _ya£{2m[e U(x)]}

to leading order in the parameter T/UyIn(U,/T). We
resort again to the integral equation

Fe)=[° gle,ef(ede, (72)

where the Green function g(g,e’) must be obtained via
integration of a corrected equation,

9 _ ) 172 172

=4 — —

ax TV e U72mU) ] e[ —m/2U(x)] )
TE 1o, (73)
de

along the basic trajectory.
To solve the equation for g(eg,€’,x), it is convenient to
introduce the new function,

g(A,e,x)= fg(e,e’,x)exp M(ST_E’) + 82_;, de ,
(74)
which obeys the equation
ag (A, g',x)
ox

=i%;[—2mU(x)]l/z(?»z-f-%)g(k,s',x) ,

+ . 1/2 _L i 8_’
Ty[—m /2U(x)] A 5 T T
X A+é ghe,x), (75)
with the initial condition
gAe,x)=1. (76)

We have introduced here a coordinate X which will be
used later as a cutoff parameter. After the substitution

g=goll+gl; 811, (77)

one obtains the simple equation



3276

dg(A,€',x)
—g£=iy[—m/2U(x)]l/2
dx
e +2ib(x) . 1
(7L2+})———-—T———17L—§ , (78)

where 8(x) is the magnitude or the energy dissipation for
the particle motion along the basic trajectory from point
X to point x. To calculate g,(A,€), one has to integrate
the right-hand side of Eq. (78) from X to the left-hand
turning point x, and back. This integral is logarithmical-
ly divergent,

x
I,
In the leading-logarithmic (LL) approximation, we are
not interested in a numeric factor under the sign of loga-
rithm, so that this result must be substituted by
($)In(Uy/T). For the term containing the function 8(x),
the final part of the trajectory only contributes to a loga-

rithmic divergency, where 8(x) has to be substituted by
8=TA. The result of these calculations is given by

172

x
m dlen—~1-, 1% | <<|x,] . (79)
%

T 2U(x)

gl (ne)= ——gln-—L;—o [WH) 5T1+mx —m—% 1 :
(80)
The inverse Fourier transformation then yields
g’,‘L(e,e')
(e—¢)?

U,
—_ Y. 2o NETRS
mlnT[(a+s)[8+

go(A)

a
[AN—i—
G, (A i i

oA

A+

AI(A)=A0(A)A{

where the notation { } (i /2) means that the expression
in the curly brackets must be integrated similarly to the
Cauchy expression (63) at A=i /2,

dr |}
1+(i/2)= . 86
LS By ey (86)
The term with A in this expression is odd in A and there-
fore gives a vanishing contribution, the product
G, (A)G_(A) must be substituted by 1—gy(A), and the
derivative of InG _ (A) can be written in the form

dInG _ ——f d\' 3InG()') 1
2w 9N A —A+i0
—— dr_ 8) oA 7)
2mi 1—go(A') A'—A+i0

_IA.__
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VI. SOLUTION OF THE CORRECTED
INTEGRAL EQUATION

The corrected integral equation in the Fourier repre-
sentation looks like

Fr+GA)f_ (D)

_ 0 , iAg'
—go(l)f_wgl(k,e)exp T +2T f(ehde',
(82)
which is equivalent to the equation
[+ (M+GA)f_ (D)
Uy
=L S
W2+1) lian—i2 [—ia—L [ r_).
oA 2 "7
(83)

In the correction term, one has to substitute f_(A) by
Eq. (68). Then, with use of the decomposition of G (L),
one separates the equation into analytical terms in the
upper and lower half-planes of A and makes use of the re-
lationship

AA)=f,(i/2). (84)
For the function 4,(A), defined by Eq. (15), one obtains

i

G_(A)NA+i/2)

] (i72), (85)

-

The expression for 4,(A) simplifies then to the following
one:

()
RINEVRININ L

go(}»')

i d\ 2AM
27 1—go(A) A/

—A+i0 ’

(88)

Symmetrization in A,A’ is equivalent to the substitution
of the latter factor by A, which gives the final result

A(A)=Ay(A)D*(A) , (89)
where the function Ao( A) is defined by Eq. (12),
dr  8o(A A
D(A)=A —_—=
(4) f 27 1— 0(7») f 2m exp[AA*+1)]—

(90)
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0.1} i

0

0 1 2 3

A 4

FIG. 1. Coefficient 4,(A) by the leading-logarithmic term.

Asymptotically, this yields

172
A hd 1 1 1
P(A)=1+4+ |— n — —
ngl n1/2 2n3/2 (n +1)1/2
~1—0.407A'%;, A<<1, o1)
’ 172
<I>(A)z5 — exp |[—— [; A>1. (92)

With an account of the asymptotical behavior of the
function 4,(A) one obtains

A(A)=A—1.63A%% A<<1, (93)

A(A)=(A/4m)exp(—A/2); A>>1. (94)

The function 4,(A) is depicted in Fig. 1.

VII. REFLECTED-PARTICLE CONTRIBUTION

As shown in Sec. III, in a narrow region of the phase
space,

lp —mox|~(ymT /0)'/?, (95)

the distribution function acquires a fine structure due to
the effects of friction and thermal noise. Outside of this
region, the solution of the Fokker-Planck equation is
correctly approximated by the solution of the integral
equation derived in Sec. IV. Matching these two solu-
tions in the region T >>g>>y T /w, where both of them
are applicable, yields the following expression for the dis-
tribution function:

a)u2

B 2myT

1
2mmy T

1/2
Fpx)=1p JI, e

du ,

(96)

where fp is a limiting value of the function f (€) at small
energies,

fr=fle—0). 97)

The function (96) provides correct boundary conditions
for the distribution functions of the right- and left-going
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particles at the turning points (p =0) for € <0. On the
other hand, for €>0 (actually, for e>y T /w) and p <0
this function is vanishing, which means that no particles
enter the potential well from the outside.

Due to the weakness of noise, the recrossing particles
occupy a narrow region of the phase space. To take them
into account, one has to make use of the small parameter
v/w<<1. In a zeroth-order approximation in this pa-
rameter, the function f(p,0) is given by fpO(p). A
correction to the decay rate is given then by the integral
[see also Eq. (44)]

(1
waw[f(p,O)—fBO(p)]-'%dp ) (98)

T

The distinction between the right- and left-going particles
becomes clear cut at x <0, |x| >>(yT/mw?)!/?, when the
distribution of the reflected particles can be approximat-
ed by the function

fe)=feO( ——s)+{;fBT8D(E); le|<<T,8.  (99)

Similar to Sec. IV, the function f (&) is obtained via one-
sided convolution of this function with the kernel
go(e—e), which gives a closed integral equation for f(¢g).
Expanding the distribution function in the parameter
y /w, one obtains for the first-order correction f!(¢g) the
nonuniform integral equation

0
fW(e)= f_wgo(s—s’)f”)(e’)de’—!— —ZE)—fBTgo(e) .

(100)

The correction to the decay rate is then given by the ex-
pression

(1)

1
-

=———2%fBT+f0 Ve, (101)

where the first term is due to the noise-induced recross-
ings, whereas the second term is due to the outgoing flux
of the initially reflected particles.

Before solving Eq. (100), it is useful to find an explicit
expression for the quantity f defined by Eq. (97). The
inverse Fourier transformation yields

Uy
T

fle) S+ -]

- 27T exp

iAe € |dA
27

x
exp T 2T

(102)

This expression should be considered a symbolic one,
since the functions f, (A) and f_(A) are actually the re-
sults of two different Laplace transformations. There-
fore, integration in A for these two functions must be car-
ried out along different contours, going correspondingly
above and below their singular points. The function
f+(A) is analytical in the upper half-plane of complex A.
Hence, the real axis of A can be used as the contour of in-
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tegration of Eq. (102). In contrast, the function f_(A)
has a pole at A=—i/2, and the contour of integration
must be placed below this point. In order to shift this
contour to the real axis of A, one has to take into account
the residue at the singular point A=—i/2. Finally, one
obtains

e+ U,
T

Q
27T

fle)=

exp

X [1+ [T e+

iAe €

T 2T

dr
2

Xexp

} . (103)

Using Eqgs. (67) and (68) for £, (A) and f_(A), their sum
can be expressed through G _(A). To calculate f5, it is
sufficient to substitute in Eq. (103) e =0, which yields

f =—Q~[1—I(A)]exp ——Uﬁ (104)
B omT T |’
where
dA igo(A)

I(A)=42A) [ == (105)

27 (A+i/2)G_(A) °

In an extremely underdamped regime, this expression
yields

I(A)=1—1.0A'2, A<<1. (106)
For large A one obtains
I(A)=(mA)'%exp(—A/4) . (107)

In order to solve Eq. (100), we resort again to the one-
sided Fourier transformations (56), obtaining the equa-
tion

ft:’(m+G(x)f‘_”(x)=g’g[l—z(m]go(m. (108)

It is easily solved by the Wiener-Hopf method with the
result

—— a1 £o1/G )
fP=En-rwie,m o =r——

(109)

The integral in Eq. (101) is proportional to fY)(i/2).
Making use of the relations G (A)G_(A)=1—gy(A),
G, (i/2)= A}/*(A) and the representation (105), one can
express the result in terms of the function 7 (A),

f‘l’(i/2)=—27/;I(A)[1—I(A)]. (110)

The final result for the variation of the preexponential
factor A (y /w,T /U,) looks like
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A(1)=——L[l—I(A)]ZE———*[1—I(A)]2 .
2w

(111)
Comparison with Eq. (15) shows that this correction con-
tributes into the function B;(A). We denote this contri-
bution through B{”(A) as a reminder that it comes from
the reflection-recrossing processes

B‘I"(A)=%[1—I(A)]2 . (112)

VIII. CORRECTIONS TO THE GREEN FUNCTION
BEYOND THE LOGARITHMIC APPROXIMATION

In Sec. V, the leading-logarithmic correction ngL(e,e’)
to the kernel of the integral equation was derived, which
was sufficient for the calculation of the function 4,(A).
To calculate the function B;(A), one needs to derive the
kernel g,(e,¢’) more accurately. Introducing a coordi-
nate X by the inequalities

(T/mo)'? << x| <<|x,] , (113)

one can split this problem into the following two. In the
major part of the potential well, x; <x <X, the function
g1(g,€’) can be calculated with the use of an expansion in
the small ratio |e/U(x)|. The result will be denoted by
g% (e,e',%), keeping in mind that this is a beyond-
logarithmic correction to the function gt (e,e’). In the
vicinity of the potential barrier (VB), i.e., between X and
the turning points x (g), x (¢'), one can use a parabolic
approximation for U(x) and, in view of a relative nar-
rowness of these regions, solve the Fokker-Planck equa-
tion iteratively. As a reminder of its origin, this contribu-
tion will be denoted by gYB(s,s’,f ). The final result for
the part of g,(g,€’) contributing to the function B(A)
looks like

gB(e,e")=gB(e,e',%) . (114)
Dependence on X will cancel out, which justifies the in-
troduction of X as an auxiliary parameter. The functions
gBL and g B will be calculated separately in two next sub-
sections.

A. Major part of the potential well

To derive an expression for g?L(e,e’,f ), one has to cal-
culate more accurately the integrals on the right-hand
side of Eq. (78). There are two different integrals. The
first one, after subtraction of the term already accounted
for in the function ngL(e,e' ), can be written as

172

U
| __m _ Y20
2y x 20 () dx In T
=Y |cy+im—=— 1
- U lnma)zjfz , (115)

where the dimensionless number Cy; is given by Eq. (29).
The second integral can be expressed through the same
number Cy,
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172 1/2
x__m 8x), vy, Yo_ ,px|__m %) N2 Y a1 o
yng X Tdx—Lam—r=y [ |- fx+fx1 [—2mU(x")]"dx' = L Am—
1/2
N U,
— 2 % — m Xr__ ’ l/2d I_lAI 0
2y fx] ST fx][ 2mU (x")]"?dx'— LA —
~-XA|Cy,+In——0 116
20 U lnma)zfz ’ ( )

where we have neglected a small term on the relative order (X /x,)? << 1. The final result for the contribution from the
major part of the potential well can now be written as follows:

T

mw*x ?

et+¢

1,1 (e—¢P
T +

C; +1
vTin 8 4A  8AT?

gII;L(E’EI’-xv)z -
w

—l]. (117)

B. Vicinity of the barrier top

To find the contribution into g, (g, €’) from the region [X,x(€)], one can use the equation

d
T—+1
de

ag(s,gx;x’X) =7%(2ms+m2w2x2)1/2 8ole—¢'), (118)

where the function g,(e—¢’) is substituted into the right-hand side as a zeroth-order approximation. Integrations in x
must be carried out from X to x (¢), where

x(e)=0; >0, (119)

x(e)=—(—2e/m)""*/w; €<O0. (120)
The result is

252
2m|c;)|x T_E)_+1

mo?x 2+e+eln
de

gole—¢') .

. = oy )4 YO
gle,e;x(e),Xx]=g(e,e;%,%)+ 2o B8

The term « X ? should be omitted, since it was already accounted for when deriving g,(e —¢’). Substituting Eq. (52) for
this function, performing the differentiation, and separating the common factor g,(e —¢’), one obtains a contribution to
g1B(e,e’;X). A similar contribution comes in from the starting piece of the trajectory X <x <x(&'), where one must use
the equation

a—g(%i—)= T%—-l (2ms'+m2w2x’2)%go(s——s’). (121)
Combining these two contributions one obtains
VB(e grig)=— X | [EFE | 2mco25c‘2+l I - A A B S 1 (e—¢')?
glleesm)=—""1 = "= T T T T ||8 4A garr?
1 , ma?x ? le] le’l e—¢' £ . .,
+4 sgne+sgneg’—2—2In2—21n T +In T +In T T In | = |-+sine —sine .

(122)

According to the definition (114), this expression should be added to Eq. (117). Dependence on the auxiliary parameter
X will then cancel out and the final result can be represented in the following form:

N L
&) =————2(Cp+1+1n2
gilee)=—7 -5 (Cu n2)

e+e’

1 1 (e—¢g')?
+
T

8 4A 8A2T?

U
————F(ee), (123)
1)

where



3280 V. 1. MELNIKOV 48

e le’] 1, 1 (e—¢)
N=A | L1 +—1 — =
File, ') T T "8 T T sarre
1 del g de |+ tsene’— EZE |3 + - (124)
4 T sgne +sgne’ T n sgne’ —sgne’

From this expression one concludes that the function f(e) behaves at small € in a singular way, particularly, it has a
finite jump at €=0 due to the term «<sgne and a logarithmic divergence. These singularities reflect a qualitative
difference between the escaping (€ >0) and reflected (e <0) particles. For energies ~yT /o, these singularities will be
smeared out similarly to Eq. (96).

The correction to the function B;(A) due to the first term in Eq. (123) is expressed through the function 4,(A), since
this term differs from Eq. (81) only by a constant factor. Therefore, B,(A) can be represented in the form

B, (A)=(A/2)[1—T1(A)]*+ A4,(A)NCy+1+1n2)+ f°°f‘”<s)ds , (125)

where the function f!)(¢) gives a correction to the distribution function f (e) due to the last term of Eq. (123).

IX. PERTURBED INTEGRAL EQUATION AND ITS SOLUTION

The function f{!(g) is governed by the integral equation

_ive e
T 2T

0 ’ ! [ J— dk' ’ *© ’ ’ ’
f“)(s)—f_wgo(e—e )f (e Yde -—f?f_(k )f_wgo(s—e \F (g€’ Jexp de' . (126)

The integral in €’ on the right-hand side of this equation has been extended to infinity, since contribution from the posi-
tive €’ vanishes identically due to analytical properties of the function f_(A’) [see Eq. (68)]. Introducing the Fourier
transformations in the standard way by Eq. (56), one obtains

f0°°f<“(s)ds=f‘+”(i/2) ) (127
To represent the final result in a compact form, we introduce the Green function of the integral equation,
n— ° " "oy — e _ &
G(e,e’) f_oogo(s,s )S(e", €' )=8p(e—¢€")exp 2T (128)
In the Fourier representation,
, N iA€'
G (Ae)—[1—go(A)]F_(A,e")=exp T (129)
The expression for 9, (i /2,&'), needed for the calculation of £}’ (i /2), is given by the function
d\ exp(iAe'/T)
n— 4172 anr P
9en=a'n) [ S /26 (1) (130)
With the use of these results, one obtains
. HAAN)
P(i/2)=A4yA , 131
SHi72) IEI (A—1/2)G 1 (MK +1/2)G _(N) (130
where
H)=— [ [dede'gyle—eH e e exp |LETINE | 7€ (132)
’ ’ T 2T
To proceed further, we introduce the convenient representation
Al . el |0 3 le'] 3
— ! y— —/ | = _~ ’ ae 1 ! . 1
8ole—¢€')H(g,e") 2 asEI Ta +1 |+ Tas' 1‘sln T 3¢ gole—¢e") (133)
Substituting this expression into Eq. (132) gives the result
FHAA)=—(A/2)T (A—N)NA—i/2)(N +i/2)[go(A)+8o(A)] , (134)

where a singular function J (1) is defined by the integral
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J(M= [ xIn|xlexp(irx)dx . (135)

This function has a singular point at A=0, and we have to consider the result of integration of this function with a func-
tion @(A) analytical near the real axis of A.
In order to elucidate the derivation, we investigate a simpler integral,

w dAh e . _ dA o .
f_wqo()u)—z;_—f_wlnlx|exp(zkx)dx-f <p(k f In|x|exp(idx dx+f ¢(k);f‘wln|x|exp(th ydx (136)

where the contour of integration C, (C,) is placed above (below) the real axis of A. Performing integrals in x, one ob-
tains the integrals

C+In(—i)) dA C+In(iA) dA _ _[r—» @(A) dA
Jo g ST [ ) SR S ——(C tinpg(0) — [ [P [ 7| AR (137
where
— [ "¢ 7MInx dx ~0.5772 . (138)

Calculating the integrals on the right-hand side of Eq. (137) by parts, one obtains

/- <p()»)% J 7 lxlexp(iix)dx=—Cp(0)+14 [~ —L1n|x|sgnxdx (139)
For the function J (A), a similar calculation yields
S dA . e d’p(A) dA
M (A)—=— ! Kt - .
J7 eI x=—ice+im [ 7 5 InlAlsgn(A) 2~ (140)
Substitution of Eqs. (134) and (140) into Eq. (131) yields
fPi2)=—CcAa,(M)+D(A), (141)
where
d?>  8o(A)t+go(A) ga dn
D(A)= A A—— In|A—A' ! _—
()= Ao(M)AT [ [inla—nlsgn(A =2 o6 ) 2 2m (142
[
In an extremely underdamped limit, A << 1, one can sub- This yields the asymptotics
stitute 4¢(A)=A, 4,(A)=A, go(A)=1, and make use of © (1) _
Eq. (64) for G.(A). Then for the function D (A) one ob- [ redex—cata, A<l (144)

tains
which after substitution into Eq. (125) reproduces Eq.

D(A)zi,mff@_é_?i In|A—Asgn(A—A") _, (34). The final result for B,(A) looks like
27 21 (A+i/2HN —i/2)?

(143) B (A)=(A/2)[1—I(A)]?
2 . . . +(Cy+1+In2—C)A,(A)+D(A) . (145)
B1 ) The function B(A) for the cubic, Eq. (35), and the
Cubic quartic, Eq. (38), potentials is shown in Fig. 2.
Quartic X. QUANTITATIVE RESULTS
1L i FOR THE TURNOVER PROBLEM

The results given by Egs. (12), (89), and (145) are
sufficient for calculation of the corrected preexponential
factor from Eq. (15). It should be emphasized that the re-
sults obtained are exact in what concerns the calculation
of A4 up to terms of the order of T/U,. Similar to [5], we
0 1 > 3 find it convenient to write down an interpolating expres-

A X onve S
sion which is correct so long as terms of the order (y /w)

FIG. 2. Coefficient in the beyond-logarithmic approximation can be neglected and reproduce the Kramers result for

B, (A) for cubic and quartic potentials. v/o~1,

0
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2 1/2
Ay /o, T/Uy)= Ay(A) [1+:1?’—7
@

UO

(146)

It is worth it to point out that in the range A>>1 the
term with B(A) correctly reproduces the decrease of A4
linear in ¥ /2w, as it follows from Egs. (45) and (48).
When combined with the first term in Eq. (146), where
Ay=1, this yields the Kramers result

Ay /0)=(1+y2/40®)V?—y 20 . (147)

Therefore, Eq. (146) describes the turnover behavior of
the prefactor 4 with account of corrections of the order
of T/U, in a weak-to-intermediate regime of friction. It
will be shown in the next section that corrections in the
same small parameter in the regime of an intermediate-
to-strong friction are always negligible. Therefore, Eq.
(146) has to be considered as fairly satisfactory for arbi-
trary friction. Numerical results for the cubic potential
(35) are shown in Fig. 3 for several values of the parame-
ter T /U, simultaneously with the curves for the simplest
interpolation expression [5],

172
- Y

Ay /o, T/Uy)= Ay(A) 2o

(148)

2
1+
4, 2

The final conclusion is that, for the regime of a not-too-
weak friction, the simplified Eq. (148) gives surprisingly
good results down to rather low barrier heights Uy~ T.
For instance, the magnitude and position of the max-
imum of A4 as a function of y/w are only weakly
influenced by the corrections. For T'/U,=1.0, the posi-
tion of the maximum of A shifts from y/w=0.76 to
v /0=0.58, whereas its magnitude is only decreased by
10%. For T/U,=0.5, the relative shift of the maximum

A T
08¢t /- 2 \\\ 1
5\ \
06| //"\\ \\ \ _
\\ \ \\
T/U0=1. \ \\ \
04t N\ N\ \ ]
\ \ \
\ \ \
\\ \ \
0.2t N\ \\ N
A
AN
0 . .
1.0 0.1 ,Y/(D 0.01

FIG. 3. Turnover behavior of the preexponential factor 4 for
the cubic potential (35). The dashed curves correspond to Eq.
(148).
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position is about 10%, its magnitude decreases less than
by 3%.

In the regime of a weak friction, the small numerical
factor in Eq. (3.1),

Uy/0S=5/36=1,
is compensated by the second numerical factor,
Cy+2+In2—C=17.49 ,

so that for the cubic potential form Egs. (31), (36), and
(37) one obtains

U
1—10-L -3 T, =0

A=A
U, 36U, T

A<1. (149)

According to general properties of asymptotic expan-
sions, one expects that Eq. (149) gives a good approxima-
tion for 4 in the region T/U,<0.2. Hence, in the case
of high barriers, U, > 5T, one can use Eq. (148) as a zero
approximation and estimate the finite-barrier corrections
with the use of Eq. (146). For U,<S57T, the pre-
exponential factor A becomes dependent both on the
height and the shape of the barrier. Fortunately, for low
barriers the activated decay rate can be efficiently calcu-
lated by computer simulations [9,11,12].

XI. INTERMEDIATE-TO-STRONG FRICTION REGIME

In a strong-friction regime, A >>1, the parameter y /o
becomes eventually of the order unity and one has to con-
sider corrections in the remaining small parameter
T/U,. As shown by Kramers, for ¥ ~w the basic result
can be obtained in a parabolic approximation for the po-
tential U(x) near the top of the barrier. To calculate
corrections to this result, one has to expand the potential
up to cubic and/or quartic terms,

ma?x® x| pwxt
2 6

Ulx)=— 2%

(150)

It will be shown below that a linear contribution of U‘®
vanishes, whereas the second-order term in this parame-
ter has the same order of magnitude as the linear-in-U‘
contribution. The anticipated expression for the pre-
exponential factor 4 can then be written in the form

, 1172
4= [1+X= S
40? 20
- Cia, L +Chay L , (151)
0 (] (0]

where the dependence on the shape of the potential enters
through the numerical factors

[U(3)]2U0
C3E(Tw2)‘3— (152)
U(4)U0
Co=—71+, (153)
T (me?)?

and a,(y /o) are universal functions. For the cubic po-
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tential considered above, C;=2%, C,=
potential C,=2.

To calculate the functions a,(y /), we substitute into
Eq. (2) the function

2, and for a cosine

-9 _p U
f(p,x) 277_Tgv(p,x)exp omT T , (154)
and rewrite it in the form
Fp _pd_ . 3
7/mTap2 O (m(ux+yp)ap
= |9 o |22 . (155)
ax ap

Following Kramers, we introduce, instead of p, a new
variable,

u=(p—amwx)w/aymT)/?, (156)
where
172
1+-L +X (157)
40° 20

In neglection of the right-hand side of Eq. (155), its solu-
tion is independent of x and is given by the error integral,

1)2

(2m) 1/2f exp >

@olu)= dv . (158)

To proceed further, the function @(x,u) is written as

@(x,u)=@o(u)+(2m) " 2P(x,u)exp( —u?/2) . (159)
On the right-hand side of Eq. (155) we substitute
U n—]
—+ Un—=———= 160
ax Tmex=UT T (160)

and consider separately the cases of » =3 and 4. The flux
of particles is calculated at x =0. Hence, it is convenient
to rescale the coordinate,

x—x(aPyT/mw®)?, (161)
and calculate an expression for ¥(0,u), which does not

depend on the scale of x. The resulting equation for
¥(x,u) looks rather compact,

_'/L _1£ b—(u +atx) oL

du? ox
=—pu,x" 1—u¢+§—'é], (162)
du
where
n/2=1 3,71
=yt | LT O n=34. (e
0 !

The case of » =4 is the most simple one, since already
the linear term gives a nonvanishing contribution. To
calculate it, the function ¥(x,u) must be expanded in
powers of x,
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3
Wx,u)=—p, S Plu)x! (164)

=0

where P;(u) is the polynomial of u. The resulting system
of equations looks like

P/'—uP]—(1+a* P, —u(l +1)P,, =813, (165)

where 3, ; is the Kronecker symbol. It can be solved by
descending iterations, starting with P,=0. The final re-
sult for Py(u) is

3ul(u?+3)(a®+1)+4]

Py(u)= . (166)
T 4+ 1)Ha+3)(3a+1)
The function a, is given by the integral
6 2,2
a u udu
=— P
7% » P o) 72
1 ? 1
=L || 1
82 |w | @12 (167)

In the limit of a weak friction, ¥ <<w, for the potential
(38) one obtains
2

3T
A~1—-X- il 1—-2-=- 168
2w + 5] ! 8 U, (168)
In the opposite limit,
@ 3 T o
~— [1l———— |, >>1 . 169
” 16 Uy 12 v/w (169)

From these expressions one concludes that corrections in
the parameter T /U, enter with numerical factors smaller
than unity, which makes them small even for T/U,~ 1.
For a cubic potential, the linear-in-u; contribution to
Y(u) is even in u, so that the integral (167) vanishes. To
find the second-order correction, we introduce the expan-
sion

(170)

2 4
Yxu)=—p; 3 Plwx'—p} 3 Qlux’.
=0 =0

The system of equations for P;(u) and Q,(u) looks like

P/'—uP/—(1+a?1)P;—u(l +1)P,
Q,"—uQ1'~(l+a21 )Q]

=8, , (171)
—u(l+1)Q; 1 =uP,_,—Pj_,

(172)
The function a;(y /a)) is then given by the integral

f exp

2 udu

(277)1/2 °
(173)

a;(y/w)= Qolu)

8
s

The numerical results for the functions a;(y/w) and
a,(y /o) are shown in Fig. 4. Due to the smallness of
these functions, the resulting corrections to Eq. (147) do
not exceed 1.5% even at T/Uy,=1. Therefore, in the re-
gime of an intermediate-to-strong friction, ¥ /w > 1, one
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FIG. 4. Dimensionless functions A4;(y /o) and a,(y /o).

can always apply Eq. (146).

Experimentally, nearly ideal model systems for the ob-
servation of activated decay are provided by Josephson
junctions [13,14]. At the present time, superconducting
quantum interference devices (SQUID) are becoming
more popular in studying the thermally activated decay,
since they allow to investigate both one- and two-
dimensional processes under controllable conditions
[15,16]. Typically, the SQUID’s operate in the regime of
an intermediate-to-strong friction. Both experimental
and numerical stimulation results agree fairly well with
the theoretical predictions for one- and two-dimensional
activation. No deviations from the Arrhenius law with
the simplest expression for the preexponential factor were
discovered down to rather low barrier heights, Uy~ 1.5T
[16].
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The results of our calculations provide a quantitative
estimation of finite-barrier corrections in the small pa-
rameter T/U,. In the intermediate-to-strong friction re-
gime, these corrections are always negligible, since the
functions a;(y /) and a4(y /o) never exceed 1/70. This
conclusion is in agreement with the experimental findings
[16]. Near the turnover region, a simple interpolating ex-
pression gives satisfactory results both for the position
and the height of the maximum of the preexponential fac-
tors down to U, /T =2. With account of corrections for
a finite-barrier height, this description of the turnover re-
gion can be extended down to U,/T=1. In the regime
of a weak friction, the finite-barrier corrections become
significant for U, /T ~5 (see Fig. 3). For lower barriers,
the activated decay rate depends nontrivially both on the
shape and the height of the potential and can only be cal-
culated numerically [11,12].

Note added in proof. Recently, finite barrier correc-
tions for the activated decay rate have been investigated
in the Smoluchowski limit by E. Pollak and P. Talkner,
Phys. Rev. E 46, 922 (1993).

ACKNOWLEDGMENTS

I am deeply grateful to Eli Pollak for valuable discus-
sions and his kind hospitality during my stay with the
Chemical Physics Department of the Weizmann Institute
of Science, Rehovot, Israel, where this work was partially
done. I am also grateful to H. Dekker and S. Meshkov
for carefully reading the manuscript and for useful com-
ments.

[1] H. A. Kramers, Physica 7, 284 (1940).

[2] E. Turlot, J. M. Martinis, C. Urbina, D. Esteve, M. H. De-
voret, S. Linqwitz, and H. Grabert, Phys. Rev. Lett. 62,
1288 (1989).

[3] P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys.
62, 251 (1990).

[4] V. 1. Mel’nikov, Phys. Rep. 209, 1 (1991).

[5] V. I. Mel’'nikov and S. V. Meshkov, J. Chem. Phys. 85,
1018 (1986).

[6] H. Grabert, Phys. Rev. Lett. 61, 1683 (1988).

[7] E. Pollak, H. Grabert, and P. Hénggi, J. Chem. Phys. 91,
4073 (1989).

[8] I. Rips and E. Pollak, J. Chem. Phys. 41, 5366 (1990).

[9] S. Linkwitz, H. Grabert, E. Turlot, D. Esteve, and M. H.
Devoret, Phys. Rev. A 45, R3369 (1992).

[10] G. Iche and P. Nozieres, J. Phys. (Paris) 37, 1313 (1976);
40, 225 (1979).

[11] H. Risken, The Fokker-Planck Equations (Springer, Ber-
lin, 1989), and references therein.

[12] R. Ferrando, R. Spadacini, and G. E. Tommei, Phys. Rev.
A 46, R699 (1992).

[13] J. M. Martinis, M. H. Devoret, and J. Clarke, Phys. Rev.
B 35, 4682 (1985).

[14] E. Turlot, D. Esteve, C. Urbina, J. M. Martinis, and M. H.
Devoret, Phys. Rev. Lett. 62, 1788 (1969); H. Grabert and
S. Linkwitz, Phys. Rev. A 37, 963 (1988).

[15] V. Lefevre-Seguin, E. Turlot, C. Urbinia, D. Esteve, and
M. H. Devoret, Phys. Rev. B 46, 5507 (1992).

[16] S. Han, J. Lapointe, and J. E. Lukens, Phys. Rev. B 46,
6338 (1992).



